

 Navigation

 	
 index

 	
 next |

 	PyTuning 0.7.0 documentation »

PyTuning

PyTuning is a Python library intended for the exploration of musical scales
and microtonalities. It can be used by developers who need ways of calculating,
analyzing, and manipulating musical scales, but it can also be used interactively.

It makes heavy use of the SymPy [http://www.sympy.org/] package, a pure-Python
computer algebra system, which allows scales and scale degrees to be
manipulated symbolically, with no loss of precision. There is also an optional
dependency on Matplotlib [http://matplotlib.org/] (and
Seaborn [http://seaborn.pydata.org/]) for some visualizations that have been
included in the package.

Some of the package’s features include:

	Creation of scales in a variety of ways (EDO, Euler-Fokker, Diatonic, Harmonic,
from generator intervals, etc.)

	Ability to represent created scales in ways that are understood by external
software (Scala, Timidity, Fluidsynth, Yoshimi, Zynaddsubfx).

	Some analysis functions (for example, PyTuning provides a framework for searching
for scale modes based upon defined metric functions and combinatorial analysis). Also
included are some number-theoretic functions, such as prime limits and odd limits.

	Some scale visualizations.

	Interactive use.

As a simple example, to create a 31-TET scale and then create a tuning table for
the timidity soft-synth:

scale = create_edo_scale(31)
tuning_table = create_timidity_tuning(scale, reference_note=69)

The design of PyTuning is purposefully simple so that non-computer professionals can
use it without much difficultly (musicians, musicologist, interested people of all
stripes).

In scope this project is similar to the Scala [http://www.huygens-fokker.org/scala/]
software package, with a few differences:

	Scala is a mature, full-featured package that includes many, many scales
and functions for manipulating and analyzing those scales. This project
is much newer and less mature; it’s scope is currently much less (but
hopefully it will be easy to extend).

	PyTuning is written in Python and relies on modern, well maintained dependencies.
Scala is written in Ada, and while this is an interesting choice, it probably
limits the population of users who could change or extend it should a need
arise.

	Scala is mainly an application. PyTuning is a development library, but with
ways for non-programmers to use it interactively.

	This package does not interact with sound cards or audio drivers, so one
can’t play a scale directly. There are, however,
functions for exporting scales into other software packages so that music
and sound can be produced.

Installation

PyTuning runs under Python 2.7.X and 3.X.

The easiest way to install PyTuning is via the Python Package Index, with
which Pytuning is registered [https://pypi.python.org/pypi/PyTuning/]:

pip install pytuning

There are two hard dependencies for PyTuning: SymPy [http://www.sympy.org/en/index.html] and
NumPy [http://www.numpy.org/]. SymPy is a pure Python library and pip will handle
it’s installation nicely. NumPy is a more complicated package and if installed via pip may
involve much compilation; it would probably behoove you to install the package manually via
whatever mechanism your platform provides before pip installing the package .

If you are running the package interactively it is recommended that the Jupyter interactive
shell be installed. This is discussed in the documentation under the notes on Interactive use.

The source-code is available on GitHub [https://github.com/MarkCWirt/PyTuning], where
it can be cloned and installed.

Documentation

Documentation for the package can be found on Read the Docs [http://pytuning.readthedocs.io/].

Roadmap

More scales, more visualizations, more analysis functions. Pull requests are welcome!

Index

	Index

 © Copyright 2016, Mark Conway Wirt.
 Created using Sphinx 1.4.9.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyTuning 0.7.0 documentation »

Basic Concepts

PyTuning is purposefully designed to be as simple as possible, so that
non-programmers (musicologists, musicians, etc.) can use it without too
much difficulty: the data structures are relatively simple; there are
currently no classes defined, instead opting for an imperative/procedural
approach.

Regardless of how it is used (interactively or as a development library),
the user should have a good understanding of some of the basic, foundational
concepts the package uses.

Scales

A scale is, simply, a list of degrees. By convention the list is bookended
by the unison and the octave, with each degree given as a frequency ratio
relative to the root tone of the scale. The first degree is
always [image: 1], the ratio of the first degree to the first degree. Most
commonly the last degree is [image: 2], as the octave is usually twice
the frequency of the root (although the package has some support for
non-standard “octaves”).

As an example, this is the standard 12-tone equal temperament scale (sometimes
referred to as 12-TET, or 12-EDO, for Equal Division of the Octave).

[image: \left [1, \quad \sqrt[12]{2}, \quad \sqrt[6]{2}, \quad \sqrt[4]{2}, \quad \sqrt[3]{2}, \quad 2^{\frac{5}{12}}, \quad \sqrt{2}, \quad 2^{\frac{7}{12}}, \quad 2^{\frac{2}{3}}, \quad 2^{\frac{3}{4}}, \quad 2^{\frac{5}{6}}, \quad 2^{\frac{11}{12}}, \quad 2\right]]

A few things to note:

	As mentioned previously, the scale includes the unison and octave.

	Each scale degree is a SymPy number, so it is represented symbolically.
Note that algebraic simplifications are performed by default.

	Even though the length of this list of 13, it is considered a 12 note
scale, because the unison and the octave is in actuality the same note.
Many of the functions in this package ask one to choose the number of notes
or degrees to be used in this function. For these you should follow
this convention.

(For those who are curious: the generation of scales is documented in
Scale Creation, but the above scale was generated with the following code:

from pytuning.scales import create_edo_scale
edo_12_scale = create_edo_scale(12)

Simplified versions of most functions are provided in the interactive
environment.)

Degrees

Scale degrees (which are expressed as frequency rations relative to the
tonic of the scale) are expressed in SymPy [http://www.sympy.org/en/index.html]
values. In practical terms the Integer and Rational class will be
used the most, but SymPy is a full-featured package, and you may benefit
from having some familiarity with it.

An example of a few degrees:

import sympy as sp

unison = sp.Integer(1) # Normal unison
octave = sp.Integer(2) # Normal octave
perfect_fifth = sp.Rational(3,2) # As a rational number
minor_second_tet = sp.Integer(2) ** sp.Rational(1,12) # the 12th root of 2
 # could also by sp.root(2,12)
lucy_L = sp.root(2,2*sp.pi) # Lucy scale Long step

Will yield the following:

[image: 1 \\ 2 \\ \frac{3}{2} \\ \sqrt[12]{2} \\ 2^{\frac{1}{2 \pi}}]

SymPy manipulates all values analytically, but sometimes one needs a floating
approximation to a degree (for example, tuning a synthesizer usually needs
frequencies expressed as floating point numbers). For the evalf()
member function can be used:

print(unison.evalf())
1.00000000000000
print(octave.evalf())
2.00000000000000
print(perfect_fifth.evalf())
1.50000000000000
print(minor_second_tet.evalf())
1.05946309435930
print(lucy_L.evalf())
1.11663288009114

Modes

A mode is a selection of notes from a scale, and is itself a list of
degrees (and therefore is also a scale). A mode can be produced from a scale
by applying a mask to the scale. Again, the functions involved are
documented elsewhere, but as example this is how we would produce the
standard major scale (which in the context of this package would be
referred to as a mode):

major_mask = (0,2,4,5,7,9,11,12)
major_mode = mask_scale(edo_12_scale, major_mask)

which produces the following scale:

[image: \left [1, \quad \sqrt[6]{2}, \quad \sqrt[3]{2}, \quad 2^{\frac{5}{12}}, \quad 2^{\frac{7}{12}}, \quad 2^{\frac{3}{4}}, \quad 2^{\frac{11}{12}}, \quad 2\right]]

Mode Objects

Some functions in this package return a mode object. For
example, the find_best_modes() function will take a scale and find
a mode (or modes), based upon some consonance metric function.
Here is one such object, which is implemented as a Python dict.

{'mask': (0, 2, 3, 5, 7, 9, 10, 12),
 'metric_3': 22.1402597402597,
 'original_scale': [1,
 256/243,
 9/8,
 32/27,
 81/64,
 4/3,
 1024/729,
 3/2,
 128/81,
 27/16,
 16/9,
 243/128,
 2],
 'scale': [1, 9/8, 32/27, 4/3, 3/2, 27/16, 16/9, 2],
 'steps': [2, 1, 2, 2, 2, 1, 2],
 'sum_distinct_intervals': 12,
 'sum_p_q': 161,
 'sum_p_q_for_all_intervals': 4374,
 'sum_q_for_all_intervals': 1822}

The meaning of these keys:

	original_scale is the original scale which was input into the function.
In this example is was a Pythagorean scale.

	scale is the output scale of the function

	mask is the mask of the original scale that produces the output

	steps is similar to mask, but reported in a different format. Each
entry in the steps list represents the number of degrees in the original
scale between successive degrees in the returned scale. The standard
major scale, for example, would be represented by
[image: \left[2, 2, 1, 2, 2, 2, 1 \right]] .

In this example there are also other keys included. sum_distinct_intervals,
sum_p_q, sum_p_q_for_all_intervals, sum_q_for_all_intervals, and
metric_3 are the outputs of calculated metric functions. This particular mode,
for example, has a rating of 161 by the sum_p_q metric.

Metric functions are describe briefly below, and in more detail in
Metric Functions.

Tuning Tables

Tuning Tables are a representation of a scale, usually a string (which can
be written to a file), which can be understood by an external software
package. As an example, to take a standard Pythagorean scale and
produce a representation understood by Scala:

pythag_scale = create_pythagorean_scale()
scala_tuning_table = create_scala_tuning(pythag_scale, "Pythagorean Scale")

The variable scala_tuning_table now contains the following:

! Scale produced by pytuning. For tuning yoshimi or zynaddsubfx,
! only include the portion below the final '!'
!
Pythagorean Scale
 12
!
256/243
9/8
32/27
81/64
4/3
1024/729
3/2
128/81
27/16
16/9
243/128
2/1

For many tuning tables one has to pin the scale to some reference
frequency. For this the convention of MIDI note number is employed. For
example, in the MIDI standard the note 69 is A 440 Hz, so by
specifying a reference of 69, the corresponding entry in the table
would be 400 Hz, and this would represent the root or tonic degree of
the scale.

Exporting the above scale in a Csound [http://csound.github.io/] compatible
format:

csound_tuning_table = create_csound_tuning(pythag_scale, reference_note=69)

yields the following:

f1 0 256 -2 8.14815 8.70117 9.16667 9.65706 10.31250 10.86420 11.60156 12.22222 \
 13.05176 13.75000 14.48560 15.46875 16.29630 17.40234 18.33333 19.31413 \
 20.62500 21.72840 23.20313 24.44444 26.10352 27.50000 28.97119 30.93750 \
 32.59259 34.80469 36.66667 38.62826 41.25000 43.45679 46.40625 48.88889 \
 52.20703 55.00000 57.94239 61.87500 65.18519 69.60938 73.33333 77.25652 \
 82.50000 86.91358 92.81250 97.77778 104.41406 110.00000 115.88477 123.75000 \
 130.37037 139.21875 146.66667 154.51303 165.00000 173.82716 185.62500 195.55556 \
 208.82813 220.00000 231.76955 247.50000 260.74074 278.43750 293.33333 309.02606 \
 330.00000 347.65432 371.25000 391.11111 417.65625 440.00000 463.53909 495.00000 \
 521.48148 556.87500 586.66667 618.05213 660.00000 695.30864 742.50000 782.22222 \
 835.31250 880.00000 927.07819 990.00000 1042.96296 1113.75000 1173.33333 1236.10425 \
 1320.00000 1390.61728 1485.00000 1564.44444 1670.62500 1760.00000 1854.15638 1980.00000 \
 2085.92593 2227.50000 2346.66667 2472.20850 2640.00000 2781.23457 2970.00000 3128.88889 \
 3341.25000 3520.00000 3708.31276 3960.00000 4171.85185 4455.00000 4693.33333 4944.41701 \
 5280.00000 5562.46914 5940.00000 6257.77778 6682.50000 7040.00000 7416.62551 7920.00000 \
 8343.70370 8910.00000 9386.66667 9888.83402 10560.00000 11124.93827 11880.00000 12515.55556

This is a 128-entry table, mapping note number to absolute frequency. Csound’s
table opcode can be used to index into the table and play the appropriate
frequency, using something like the following:

inote init p4
iveloc init p5
ifreq table inote, 1
a1 oscil iveloc, ifreq, 2
 outs a1, a1

(This assumes that p4 in the orchestra file contains MIDI note numbers,
of course. If you use a different convention there are translation opcodes
that can be used.)

Metric Functions

Metric Functions are functions that takes a scale as an input and returns
a numeric value calculated from that scale. It is used, for example, in
find_best_modes() to evaluate the consonance of a scale (find_best_modes()
uses a metric to evaluate the consonance of all possible modes of a scale and
returns the evaluation of those modes as a mode_object).

The return value of a metric function should be a dict with a unique string
identifier as the key and the metric as the value.

As an example, the following is one of the package-defined metrics:

As an example of use, the following:

pythag = create_pythagorean_scale()
metric = sum_p_q_for_all_intervals(pythag)

yields the following:

{'sum_p_q_for_all_intervals': 1092732}

 © Copyright 2016, Mark Conway Wirt.
 Created using Sphinx 1.4.9.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyTuning 0.7.0 documentation »

Scale Creation

There are several scale-creation functions in the package. They are found in
pytuning.scales and can be imported into the program’s namespace with

from pytuning.scales import *

(Note that for interactive use these are imported by default).

The Harmonic Scale

We’ll start with the harmonic scale; it will illustrate many of the concepts
used in scale creation.

There are two important concepts to understand:

	Normalization: If a scale is normalized (which is the default in all cases),
then the intervals of the scale are normalized to fall within a single octave.
This means scaling the interval either up or down the number of octaves needed
to make the interval fall between the unison and the octave.

	The Octave: Normally an octave is defined as a doubling of frequency ([image: 2]),
but it is possible to define an octave by some other number. If this is the case
the normalization will takes place over this new octave.

The function to create a harmonic scale is, create_harmonic_scale:

As an example, if we create a non-normalized harmonic scale of 10 harmonics:

harmonic_scale = create_harmonic_scale(1, 10, normalize=False)

We have the following scale:

[image: \left [1, \quad 2, \quad 3, \quad 4, \quad 5, \quad 6, \quad 7, \quad 8, \quad 9, \quad 10\right]]

If we normalize it each interval is scaled by a power of two to fall within 1
and 2. So, for example, the [image: 9] becomes [image: \frac{9}{8}], because the
nine must be scaled by three octaves to fall within that range:

[image: \frac{9}{8} = \frac{9}{2^3}]

So the normalized scale is:

[image: \left [1, \quad \frac{9}{8}, \quad \frac{5}{4}, \quad \frac{3}{2}, \quad \frac{7}{4}, \quad 2\right]]

But if we change our octave definition to be [image: 3], we normalize on powers
of 3:

harmonic_scale = create_harmonic_scale(1, 10, octave=3)

yields:

[image: \left [1, \quad \frac{10}{9}, \quad \frac{4}{3}, \quad \frac{5}{3}, \quad 2, \quad \frac{7}{3}, \quad \frac{8}{3}, \quad 3\right]]

Equal Divsion of the Octave (Equal Temprament)

Equal temperament scales can be created with the create_edo_scale()
function. Note that this function does not accept a normalize argument, because
EDO scales are normalized by definition. If does, however, allow you to change the
definition of the formal octave.

Scales from a Generator Interval

The create_equal_interval_scale() function will generate a scale from a
generator interval. This is the base function for several other scale types
(for example, the Pythagorean scale is created with a generator interval
of [image: \frac{3}{2}]).

In he creation of a scale, the generator interval can either be used
directly (for, for example, making each successive tone a generator
interval above the previous tone), or in an inverted sense (making each
interval a generator down from the previous). This function starts
from the unison and walks down the number specified, walking up for the rest
of the intervals.

The Pythagorean Scale

This is the standard Pythagorean scale. Note that we can choose the number of
up and down intervals in the scale. The default yields the standard scale, with the
fourth degree as a diminished fifth, as opposed to the augmented fourth.

So, for the standard scale we can use:

scale = create_pythagorean_scale()

yielding:

[image: \left [1, \quad \frac{256}{243}, \quad \frac{9}{8}, \quad \frac{32}{27}, \quad \frac{81}{64}, \quad \frac{4}{3}, \quad \frac{1024}{729}, \quad \frac{3}{2}, \quad \frac{128}{81}, \quad \frac{27}{16}, \quad \frac{16}{9}, \quad \frac{243}{128}, \quad 2\right]]

If we wanted the augmented fourth:

scale = create_pythagorean_scale(number_down_fifths=5)

yielding:

[image: \left [1, \quad \frac{256}{243}, \quad \frac{9}{8}, \quad \frac{32}{27}, \quad \frac{81}{64}, \quad \frac{4}{3}, \quad \frac{729}{512}, \quad \frac{3}{2}, \quad \frac{128}{81}, \quad \frac{27}{16}, \quad \frac{16}{9}, \quad \frac{243}{128}, \quad 2\right]]

The Quarter-Comma Meantone Scale

An example of use:

scale = create_quarter_comma_meantone_scale()

yields:

[image: \left [1, \quad \frac{8}{25} 5^{\frac{3}{4}}, \quad \frac{\sqrt{5}}{2}, \quad \frac{4 \sqrt[4]{5}}{5}, \quad \frac{5}{4}, \quad \frac{2}{5} 5^{\frac{3}{4}}, \quad \frac{16 \sqrt{5}}{25}, \quad \sqrt[4]{5}, \quad \frac{8}{5}, \quad \frac{5^{\frac{3}{4}}}{2}, \quad \frac{4 \sqrt{5}}{5}, \quad \frac{5 \sqrt[4]{5}}{4}, \quad 2\right]]

Euler-Fokker Genera

Diatonic Scales

As another example of creating a diatonic scale, we can use the five-limit
constructors (which are defined in pytuning.constants):

five_limit_constructors = [
 (sp.Rational(16,15), "s"),
 (sp.Rational(10,9), "t"),
 (sp.Rational(9,8), "T"),
]

to create Ptolemy’s Intense Diatonic Scale:

from pytuning.constants import five_limit_constructors
from pytuning.scales import create_diatonic_scale

scale = create_diatonic_scale(five_limit_constructors,
 ["T", "t", "s", "T", "t", "T", "s"])

which gives us:

[image: \left [1, \quad \frac{9}{8}, \quad \frac{5}{4}, \quad \frac{4}{3}, \quad \frac{3}{2}, \quad \frac{5}{3}, \quad \frac{15}{8}, \quad 2\right]]

Note that if every identifier is a single-character string, specification
can also be passed in as a string. So this is equivalent:

from pytuning.constants import five_limit_constructors
from pytuning.scales import create_diatonic_scale

scale = create_diatonic_scale(five_limit_constructors, "TtsTtTs")

 © Copyright 2016, Mark Conway Wirt.
 Created using Sphinx 1.4.9.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyTuning 0.7.0 documentation »

Metric Functions

A metric function is a function that takes a scale as input and
returns a calculated value. As mentioned in Basic Concepts, it returns
a Python dict with the metric name as the key, and the metric value
as the value.

The currently defined metrics all estimate the consonance or dissonance of
a scale.

sum_p_q()

sum_distinct_intervals()

metric_3()

sum_p_q_for_all_intervals()

sum_q_for_all_intervals()

All Metrics

There is also a function that calculates all defined metrics for a
scale.

 © Copyright 2016, Mark Conway Wirt.
 Created using Sphinx 1.4.9.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyTuning 0.7.0 documentation »

Scale Analysis and Creation (Redux)

Scale Creation describes the way that many standard scales are generated
from within the package. But there are other ways to create scales.

Mode Selection

When one creates a scale – for example, the Pythagorean scale or a scale
of the Euler-Fokker Genera – one can looks at the various modes that
can be created for that scale and evaluate them by certain criteria.

The find_best_modes() function can be used for this. This function accepts
and input scale, the number of tones for the mode, and the optimization functions
that should be used for evaluating the scale.

As an example, one scale that’s I’ve used in compositions is created from choosing
a seven-note mode from a harmonic scale, optimized over the metric sum_p_q_for_all_intervals().
This particular scale is based upon the harmonic series referenced to the fourth
harmonic.

The following code:

harmonic_scale = create_harmonic_scale(4,30)
modes = find_best_modes(harmonic_scale,
 num_tones=7,
 sort_order = ['sum_p_q_for_all_intervals'],
 num_scales=1,
 metric_function = sum_p_q_for_all_intervals)

yields the following object:

[{'mask': (0, 2, 4, 5, 8, 12, 14, 15),
 'original_scale': [1,
 17/16,
 9/8,
 19/16,
 5/4,
 21/16,
 11/8,
 23/16,
 3/2,
 25/16,
 13/8,
 27/16,
 7/4,
 29/16,
 15/8,
 2],
 'scale': [1, 9/8, 5/4, 21/16, 3/2, 7/4, 15/8, 2],
 'steps': [2, 2, 1, 3, 4, 2, 1],
 'sum_p_q_for_all_intervals': 572}]

The returned scale:

[image: \left [1, \quad \frac{9}{8}, \quad \frac{5}{4}, \quad \frac{21}{16}, \quad \frac{3}{2}, \quad \frac{7}{4}, \quad \frac{15}{8}, \quad 2\right]]

minimizes the metric for all possible combinations of 7 notes chosen from
the original harmonic scale.

Factoring an Interval

Sometimes it is interesting to take an interval and find an expression for that
interval over some set of generator intervals. For this the function
find_factors() is provided.

One has to specify the generator intervals. This is done by passing the function
a list of tuples. Each tuple has two members: The generator interval, and a
character representation of the generator interval. Usually these are a single,
unique character (such as X), but it can also be in the form 1/X. If it
is in this form the generator interval should be the reciprocal of the interval
designated by X.

As an example, we could create a generator interval that represents the tone
and semi-tone of a 31-EDO scale:

edo31_constructors = [
 (sp.power.Pow(2,sp.Rational(2,31)), "T"), # a tone
 (sp.power.Pow(2,sp.Rational(1,31)), "s"), # a semitone
]

(Note that the tone is just twice the semitone, so we could probably get by with
just defining the semitone).

Now we can define an interval, say, one of the intervals of the Pythagorean
scale:

[image: \frac{21}{16}]

and see what factoring yields an interval closest to the original.

results = find_factors(interval, edo31_constructors)
results

results now contains the factoring, the factoring in symbolic terms, and
the resultant interval.

([2**(2/31), 2**(2/31), 2**(2/31), 2**(2/31), 2**(2/31), 2**(2/31)],
 ['T', 'T', 'T', 'T', 'T', 'T'],
 2**(12/31))

The last entry is the returned interval:

[image: 2^{\frac{12}{31}}]

If one is interested in seeing how closely the factored interval matches the
original interval, the ratio_to_cents() function in pytuning.utiities can
be used.

from pytuning.utilities import ratio_to_cents
print(ratio_to_cents(results[2] / interval))

yields:

-6.26477830225428

In other words, the derived interval is flat about 6.3 cents from the target
interval.

Approximating a Scale with Another Scale

The above factoring of an interval over a set of generators can be extended: a
scale can be factored too.

To do this the create_scale_from_scale() function is used.

The first step in using this function is to create an interval function. It is
similar to find_factors() in that it accepts an interval and a max factor, and
it returns the factor. But the actual generator intervals are bound to this function.

The easiest way of creating this function is to take the generator intervals
that you’re interested in and to bind them to find_factors() via a partial
function application. As an example, we can take the five-limit constructors:

five_limit_constructors = [
 (sp.Rational(16,15), "s"),
 (sp.Rational(10,9), "t"),
 (sp.Rational(9,8), "T"),
]

And use them to approximate the Pythagorean scale:

from pytuning.scales import create_pythagorean_scale
from pytuning.scale_creation import create_scale_from_scale, find_factors
from pytuning.constants import five_limit_constructors
from functools import partial

interval_function = partial(find_factors, constructors=five_limit_constructors)
pythag = create_pythagorean_scale()
results = create_scale_from_scale(pythag, interval_function)

The return value is a tuple, the first element of which is derived scale, the
second of which is the symbolic factoring. The scale which was found was

[image: \left [1, \quad \frac{16}{15}, \quad \frac{9}{8}, \quad \frac{32}{27}, \quad \frac{81}{64}, \quad \frac{4}{3}, \quad \frac{1024}{729}, \quad \frac{3}{2}, \quad \frac{128}{81}, \quad \frac{27}{16}, \quad \frac{16}{9}, \quad \frac{243}{128}, \quad 2\right]]

If you look at the Pythagorean scale:

[image: \left [1, \quad \frac{256}{243}, \quad \frac{9}{8}, \quad \frac{32}{27}, \quad \frac{81}{64}, \quad \frac{4}{3}, \quad \frac{1024}{729}, \quad \frac{3}{2}, \quad \frac{128}{81}, \quad \frac{27}{16}, \quad \frac{16}{9}, \quad \frac{243}{128}, \quad 2\right]]

you can see that they only differ in the second degree (which if we look at
the first member of the return we can see is factored as [‘s’]). Looking at how
much they differ:

ratio = results[0][1] / pythag[1]
print(ratio)
81/80
print(ratio_to_name(ratio))
Syntonic Comma
delta = ratio_to_cents(ratio)
print(delta)
21.5062895967149

we see that the difference is [image: \frac{81}{80}], which is the syntonic comma
(about 21.5 cents).

create_scale_from_scale() can also accept a tone_table which is a list
of the potential breakdowns that can be used in the analysis.

Note that the first entry of the factors is always for the ratio 1, and is returned
as an empty list (as there really are no factors in this sense).

 © Copyright 2016, Mark Conway Wirt.
 Created using Sphinx 1.4.9.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyTuning 0.7.0 documentation »

Tuning Tables

A tuning table is a text representation of a scale that can be interpreted
by an external program. This is usually used to tune a synthesizer or other
sound source so that the scale can be used in a musical composition.

Some tuning tables – such as that used by Scala – describe the scale in
absolute terms, but most need to have a reference defined so that the scale
degrees can be mapped to a frequency. For this purpose the PyTuning package
has adopted the MIDI standard for note numbers and frequencies.

	Octave
	C
	C#
	D
	D#
	E
	F
	F#
	G
	G#
	A
	A#
	B

	-2
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11

	-1
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23

	0
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35

	1
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47

	2
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59

	3
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71

	4
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83

	5
	84
	85
	86
	87
	88
	89
	90
	91
	92
	93
	94
	95

	6
	96
	97
	98
	99
	100
	101
	102
	103
	104
	105
	106
	107

	7
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119

	8
	120
	121
	122
	123
	124
	125
	126
	127
	
	
	
	

So, for example, note number 69 corresponds to middle A, whereas 60
corresponds to middle C. The frequency standard is 12-EDO, and the note
69 is pegged to 440 Hz. Thus if you passed 69 as the reference note,
the 69’th entry in the table would be 440 Hz and this would correspond to the
first degree of the scale. 60 would cause the first degree of the scale
to be assigned to that note number (with a corresponding frequency of
about 261.6 Hz). The timidity [http://timidity.sourceforge.net/] soft synth
is an example of a synthesizer that needs this reference note and frequency.

In general the table will need to be output to disk so that it can read
by the program. This can be done with something like:

from pytuning.tuning_tables import create_timidity_tuning
from pytuning.scales import create_euler_fokker_scale

reference_note = 60
scale = create_euler_fokker_scale([3,5],[3,1])

tuning = create_timidity_tuning(scale, reference_note=reference_note)

with open("timidity.table", "w") as table:
 table.write(tuning)

This will cause the generated scale:

[image: \left [1, \quad \frac{135}{128}, \quad \frac{9}{8}, \quad \frac{5}{4}, \quad \frac{45}{32}, \quad \frac{3}{2}, \quad \frac{27}{16}, \quad \frac{15}{8}, \quad 2\right]]

to be written to a disk file, timidity.table, which can be understood
by timidity:

timidity -Z timidity.table score.mid

Timidity

Scala

The Scala tuning table can be used with the Scala package [http://www.huygens-fokker.org/scala/], but it can also
be used to tune the soft synth Zynaddsubfx [http://zynaddsubfx.sourceforge.net/],
as well as its derivative Youshimi [https://sourceforge.net/projects/yoshimi/].
With the soft synths you will need to explicitly set the reference note and
frequency in the scale GUI.

Fluidsynth

Csound

For use in Csound [http://csound.github.io/] PyTuning will generate a
table of frequencies that can be used as a table lookup, mapped to MIDI note
number. As mentioned in the basic concepts, the easiest way to use this
is via the table opcode:

inote init p4
iveloc init p5
ifreq table inote, 1
a1 oscil iveloc, ifreq, 2
 outs a1, a1

 © Copyright 2016, Mark Conway Wirt.
 Created using Sphinx 1.4.9.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyTuning 0.7.0 documentation »

Number Theory

While this part of the package isn’t particularly fleshed out yet, there are
a few number-theoretic functions for the analysis of scales.

Odd Limits

PyTuning contains functions for finding the odd Limit [https://en.wikipedia.org/wiki/Limit_(music)#Odd_limit] for both intervals
and scales.

We can define and interval – say, [image: \frac{45}{32}], and fine its odd-limit
with the following:

from pytuning.number_theory import odd_limit

interval = sp.Rational(45,32)
limit = odd_limit(interval)

which yields and answer of 45.

One can also find the odd limit of an entire scale with the find_odd_limit_for_scale()
function:

from pytuning.scales import create_euler_fokker_scale
from pytuning.number_theory import find_odd_limit_for_scale

scale = create_euler_fokker_scale([3,5],[3,1])
limit = find_odd_limit_for_scale(scale)

which yields 135. (Examining the scale:

[image: \left [1, \quad \frac{135}{128}, \quad \frac{9}{8}, \quad \frac{5}{4}, \quad \frac{45}{32}, \quad \frac{3}{2}, \quad \frac{27}{16}, \quad \frac{15}{8}, \quad 2\right]]

you will see that this is the largest odd number, and is found in
the second degree.)

Prime Limits

One can also compute prime limits [https://en.wikipedia.org/wiki/Limit_(music)#Prime_limit]
for both scales and intervals. Extending the above example, one would assume that the
Euler-Fokker scale would have a prime-limit of 5, since that’s the highest prime used
in the generation, and in fact:

from pytuning.scales import create_euler_fokker_scale
from pytuning.number_theory import find_prime_limit_for_scale

scale = create_euler_fokker_scale([3,5],[3,1])
limit = find_prime_limit_for_scale(scale)

will return 5 as the limit.

 © Copyright 2016, Mark Conway Wirt.
 Created using Sphinx 1.4.9.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyTuning 0.7.0 documentation »

Utilities

The PyTuning package contains some utilities which may be useful. In general these
tend to be smaller utilities and tasks that are useful in the analysis
of musical scales, but they are not full-featured “things” in and of themselves.

Interval Normalization

As an example, the interval [image: 9] would normalize to [image: \frac{9}{8}], because
9 needs to be scaled down by three octaves to fall within the limit of 1 and 2:

[image: \frac{9}{8} = \frac{9}{2^3}]

ni = normalize_interval(sp.Integer(9))
print(ni)
9/8

One can also normalize on a non-standard interval, for example, 3:

ni = normalize_interval(sp.Integer(34), octave=3)
print(ni)
34/27

Distinct Intervals

distinct_intervals() returns all the distinct intervals within a musical
scale. Note, though, that it does not include the unison (or the octave) in the
results, as all scales contain those intervals by definitions.

As an example, if we were to take a Pythagorean scale and find the intervals
that exist within it:

pythag = create_pythagorean_scale()
di = distinct_intervals(pythag)

we end up with:

[image: \left [\frac{2187}{2048}, \quad \frac{256}{243}, \quad \frac{8192}{6561}, \quad \frac{262144}{177147}, \quad \frac{4096}{2187}, \quad \frac{3}{2}, \quad \frac{243}{128}, \quad \frac{1024}{729}, \quad \frac{19683}{16384}, \quad \frac{729}{512}, \quad \frac{6561}{4096}, \quad \frac{65536}{59049}, \quad \frac{177147}{131072}, \quad \frac{59049}{32768}, \quad \frac{81}{64}, \quad \frac{32}{27}, \quad \frac{27}{16}, \quad \frac{4}{3}, \quad \frac{9}{8}, \quad \frac{32768}{19683}, \quad \frac{16}{9}, \quad \frac{128}{81}\right]]

Converting a Ratio to a Cent Value

This function is useful if you have a symbolic value (a rational or
transcendental, for example) and you want to see its value in cents
(a logarithmic scale in which there are 1200 steps in a factor of
two). For example:

interval = sp.Rational(3,2) # A perfect fifth
cents = ratio_to_cents(interval)
print(cents)
701.955000865387

Converting a Cent Value to a Ratio

This function takes a cent value and returns it as a frequency ratio (a
sympy floating point number).

print(cents_to_ratio(700.0))
1.49830707687668

(In other words, the 12-EDO fifth (700 cents) is very close to that of the
Pythagorean fifth ([image: \frac{3}{2}], or 1.5).)

Converting a Note Number to a Frequency

With this function we can calculate the frequency of any note number.
If defaults to the MIDI standard, which pegs note number 69 to
440 Hz and uses a 12-EDO scale.

As an example, MIDI note 60 (Middle-C):

print(note_number_to_freq(60))
261.625565300599

But if, for example, we wanted to use a different pitch standard, we
could peg A to 444 Hz.

print(note_number_to_freq(60, reference_frequency=444.0))
264.003979530604

You can also pass in a non-EDO tuning if you’re converting a different kind
of scale to frequencies. This is used often in the code associated with the
tuning tables.

Naming A Ratio

This function will look up the name of a ratio and return it (returning None)
if it is not found.

As an example:

pythag = create_pythagorean_scale()
names = [ratio_to_name(x) for x in pythag]

names now contains:

 ['Unison',
'Pythagorean Minor Second',
'Pythagorean Major Second',
'Pythagorean Minor Third',
'Pythagorean Major Third',
'Perfect Fourth',
'Pythagorean Diminished Fifth',
'Perfect Fifth',
'Pythagorean Minor Sixth',
'Pythagorean Major Sixth',
'Pythagorean Minor Seventh',
'Pythagorean Major Seventh',
'Octave']

There are currently about 260 intervals in the internal catalog, so while not
complete, the database is fairly extensive.

Comparing Two Scales

This function will produce a simple textual representation of the difference
between two scales. As an example, comparing the 12-EDO and Pythagorean scales:

from pytuning.scales import create_edo_scale, create_pythagorean_scale
from pytuning.utilities import compare_two_scales

scale_1 = create_edo_scale(12)
scale_2 = create_pythagorean_scale()

compare_two_scales(scale_1, scale_2, title=['12-TET', 'Pythagorean'])

produces:

 12-TET Pythagorean
 Cents Freq Cents Freq Delta(Cents)
========= ========= ========= ========= ============
 0.0000 220.0000 0.0000 220.0000 0.0000
 100.0000 233.0819 90.2250 231.7695 9.7750
 200.0000 246.9417 203.9100 247.5000 -3.9100
 300.0000 261.6256 294.1350 260.7407 5.8650
 400.0000 277.1826 407.8200 278.4375 -7.8200
 500.0000 293.6648 498.0450 293.3333 1.9550
 600.0000 311.1270 588.2700 309.0261 11.7300
 700.0000 329.6276 701.9550 330.0000 -1.9550
 800.0000 349.2282 792.1800 347.6543 7.8200
 900.0000 369.9944 905.8650 371.2500 -5.8650
1000.0000 391.9954 996.0900 391.1111 3.9100
1100.0000 415.3047 1109.7750 417.6562 -9.7750
1200.0000 440.0000 1200.0000 440.0000 0.0000

 © Copyright 2016, Mark Conway Wirt.
 Created using Sphinx 1.4.9.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyTuning 0.7.0 documentation »

Visualizations

PyTuning includes some visualizations for the analysis of scales, but this
is not yet fleshed out.

The graphics are via Matplotlib [http://matplotlib.org/], which is the de facto
implementation of analytical graphics for python. There is also an optional
dependency on Seaborn [http://seaborn.pydata.org/]. Seaborn is good to include
if you can – it makes the graphs better – but it’s a large package, owning
to its dependencies (which include SciPy [https://www.scipy.org/]
and Pandas [http://pandas.pydata.org/]; great packages, but
extensive and large). If you have disk space to spare you may want to install it;
otherwise you can get my with Matplotlib alone. On my system SciPy and Pandas
weigh in at about 200 megabytes, not including any dependencies that they require.
Matplotlib, on the other hand, is about 26 megabytes.

The Consonance Matrix

It’s nice to be able to get an intuitive feeling for the consonance or dissonance
of a scale. For this, the consonance matrix is provided.

The consonance matrix forms an interval between every degree in the scale and
applies a metric function to it. The default metric function just measures the
denominator of the interval after any simplification it can undergo
(and is really only meaningful for degrees which are expressed an integer ratios).

As an example, we can create a scale of the Euler-Fokker type:

scale = create_euler_fokker_scale([3,5],[2,1])

which is

[image: \left [1, \quad \frac{9}{8}, \quad \frac{5}{4}, \quad \frac{45}{32}, \quad \frac{3}{2}, \quad \frac{15}{8}, \quad 2\right]]

Now, to create a consonance matrix:

from pytuning.visualizations import consonance_matrix
matrix = consonance_matrix(scale)

matrix now contains a matplotlib Figure. To write it as PNG:

matrix.savefig('consonance.png')

Which yields:

[image: _images/consonance.png]
Because this function accepts an arbitrary metric, it can be used for any analysis
performed on the intervals of a scale; it does not need to really be a measurement
or estimate of consonance. As an example, let’s say that (for some reason) you’re
interested in how far from unity each interval is:

def metric_unity(degree):
 normalized_degree = normalize_interval(degree)
 y = abs (1.0 - normalized_degree.evalf())
 return y

scale = create_euler_fokker_scale([3,5],[2,1])
matrix = consonance_matrix(scale, metric_function=metric_unity, title="Distance from Unity")

Our graph now looks like:

[image: _images/unity.png]
We could even do something like look for perfect fifths within our scale:

def metric_fifth(degree):
 p5 = sp.Rational(3,2)
 normalized_degree = normalize_interval(degree)
 y = normalize_interval(p5 / normalized_degree).evalf()
 y = y if y == 1 else 0
 return y

scale = create_euler_fokker_scale([3,5],[2,1])
matrix = consonance_matrix(scale, metric_function=metric_fifth,
 title="Relation to Perfect Fifth", annot=False)

which gives us:

[image: _images/p5.png]
where the highlighted cells denote perfect fifths.

You’ll note that the entry for [image: \frac{45}{32}] and [image: \frac{15}{8}] is 1
(a perfect fifth). We can verify this:

print(normalize_interval(sp.Rational(45,32) / sp.Rational(15,8)))
3/2

 © Copyright 2016, Mark Conway Wirt.
 Created using Sphinx 1.4.9.

 Navigation

 	
 index

 	
 previous |

 	PyTuning 0.7.0 documentation »

Using PyTuning Interactively

With a little knowledge of Python, one can use PyTuning in an
interactive environment.

If you plan on doing this, I recommend using the Jupyter
QtConsole [http://jupyter.org/qtconsole/stable/]. Jupyter is a
full-featured interactive environment for several programming languages
(the project started as IPython, but has expanded to cover many
languages).

Included in the distribution is a script, interactive.py, which is
useful for setting up your environment.

Installing Jupyter

(Note: I have experience with Linux and MacOS, so these instructions are
focused on these platforms. Jupyter runs under Windows, but I have no
experience on that platform.)

On Linux, good ways of installing Jupyter include using your native
package manager or installing it via a third-party distribution.

Native Packages

On Ubuntu Jupyter is still referred to as IPython. On Xenial, for example,
there are packages for both Python 2.7 and Python 3:

vagrant@ubuntu-xenial:~$ aptitude search qtconsole
p ipython-qtconsole - enhanced interactive Python shell - Qt console
p ipython3-qtconsole - enhanced interactive Python 3 shell - Qt console
vagrant@ubuntu-xenial:~$

On Arch Linux:

mark@lucid:~$ pacman -Ss qtconsole
community/python-qtconsole 4.2.1-1
 Qt-based console for Jupyter with support for rich media output
community/python2-qtconsole 4.2.1-1
 Qt-based console for Jupyter with support for rich media output
mark@lucid:~$

(PyTuning will run under either Python 2.7 or Python 3.X, so the version
you install is up to you.)

I would also suggest installing Matplotlib so that graphics can be used
within the console, i.e:

vagrant@ubuntu-xenial:~$ aptitude search matplotlib
p python-matplotlib - Python based plotting system in a style similar to
p python-matplotlib:i386 - Python based plotting system in a style similar to
p python-matplotlib-data - Python based plotting system (data package)
p python-matplotlib-dbg - Python based plotting system (debug extension)
p python-matplotlib-dbg:i386 - Python based plotting system (debug extension)
p python-matplotlib-doc - Python based plotting system (documentation packag
p python-matplotlib-venn - Python plotting area-proportional two- and three-w
p python3-matplotlib - Python based plotting system in a style similar to
p python3-matplotlib:i386 - Python based plotting system in a style similar to
p python3-matplotlib-dbg - Python based plotting system (debug extension, Pyt
p python3-matplotlib-dbg:i386 - Python based plotting system (debug extension, Pyt
p python3-matplotlib-venn - Python 3 plotting area-proportional two- and three
vagrant@ubuntu-xenial:~$

And optionally Seaborn:

vagrant@ubuntu-xenial:~$ aptitude search seaborn
p python-seaborn - statistical visualization library
p python3-seaborn - statistical visualization library
vagrant@ubuntu-xenial:~$

(But note that Seaborn is a bit large. See the discussion in Visualizations.)

Third Party Packages

Jupyter can also be installed via third-party Python distributions. This
is my preferred way of doing it, and on MacOS it is (in my opinion) the
only viable option. I imagine that a third-party distribution would be
the easiest way to do this on Windows.

One good distribution is Continuum Analytics Miniconda [http://conda.pydata.org/miniconda.html]. Once
miniconda is installed [http://conda.pydata.org/docs/install/quick.html], the
conda tool can be used to install the necessary packages:

vagrant@ubuntu-xenial:~$ conda install jupyter qtconsole matplotlib seaborn sympy numpy

Setting the Environment

The PyTuning distribution contains a script, interactive.py, that can
be used to import the package into your namespace, as well as setting up
some convenience functions. Where that script lives on your computer can
vary by platform as well as python distribution. If you’re on Linux
and installed PyTUning with your system python, there’s a good chance
it’s in /usr/bin. If you installed into the Miniconda distribution, then
it will probably be somewhere like ~/miniconda/bin.

Once you’ve launched the console, this script should be loaded into
the environment with the %load command. This will load it into the console,
but you’ll need to execute it. This is normally done with Shitf-enter,
although Control-enter may be used on some platforms/versions.

[image: _images/qtconsole_boot.png]
This will bring load the script into the console, at which point a
[Shit-Enter] will execute it.

[image: _images/interactive.png]

A (Very) Brief Introduction to Jupyter

There are a few things about Jupyter which are useful for
interacting with the Python interpreter.

Tab Completion

Jupyter has a very good tab completion system which can save a lot
of typing.

As a first example, the %load command (above) can use completion
to navigate to the file. One need only type enough to disambiguate each
directory in the path and the tab will complete it, much in the same
way that the bash shell will do so.

Tab completion can also be used to find functions that are defined
in your namespace. As an example, by typing create_ into the
console and hitting tab you will see all objects and functions that
begin with that string, and by hitting the tab a second time a selector
will be brought up that allows you to select the function you’re
after:

[image: _images/tab1.png]

Tool Tips

Jupyter also has a nice tool-tip function that will show a function’s
documentation once the opening (is typed:

[image: _images/tooltip.png]

History

Jupyter also has a nice history function. If, for example, at some point
in your session you entered the following:

In [3]: scale = create_harmonic_scale(2,6)

In [4]:

Then, later on in the session if you type scale =, each time you
hit the up arrow it will search through your history and bring up lines
beginning with that character string. You can then edit that line and make
changes.

In [3]: scale = create_harmonic_scale(2,6)

In [4]: scale2 = create_harmonic_scale(2,7)

In [5]:

Rich Display

By default scales and degrees will be displayed symbolically. If you want
text display you can use the print() function.

[image: _images/rich_printing.png]

Graphics

With matplotlib installed one also has access to graphics. A graph can
be displayed within the console, or it can be displayed in a simple
viewer that allows some editing and the saving of the graphic file in
a few different formats (JPEG, PNG, SVG). The viewer comes up automatically.
If you close it at want to bring it back up later, you can use the show()
function (i.e., matrix.show()).

[image: _images/graphics.png]
Note that by re-sizing the window, you re-size the graphic.

You can also save the figure directly from the console:

[image: _images/figsave.png]

A Sample Session

On my personal website I discuss a scale [http://www.pataphysical.info/a-new-musical-scale.html]
that I’ve been working with recently for music composition. It’s a mode
of the harmonic scale which minimizes dissonance by one of the metrics
included in the distribution. In the following session I create the scale
and create two tuning tables (a timidity and scala table) for use in
music composition.

[image: _images/session1.png]

Helper Functions

interactive.py also creates a few helper functions for the creation
of scales. They wrap the base functions in an interactive prompt and
define a global variable, scales into which the calculated scale
is placed.

As an example, to create a harmonic scale:

[image: _images/helpers1.png]
Only a few functions have yet been written, but more will be included in
future releases.

Running in a Persistant Way

Jupyter also offers an interactive notebook [http://jupyter.org/], similar
to a Matlab notebook. For more complicated analysis it is my preferred way
of interacting with the PyTuning library. Documentation, graphics, equations, code,
and output calculations can all be included. It can be installed in a way
that is similar to the console (and in fact may be installed along with it,
depending on how the packages maintainers on your platform have chosen to
break things up).

The Github repository for this project has a directory which
contains a rendered notebook [https://github.com/MarkCWirt/PyTuning/tree/master/docs/notebooks]
that shows an exploration of pentatonic scales in the Pythagorean tuning.
Github renders notebooks well, so you can see what’s possible to decide if you
want to install the software. If you’re going to be doing anything really
complicated in an interactive environment, I would recommend installing and
using this.

 © Copyright 2016, Mark Conway Wirt.
 Created using Sphinx 1.4.9.

 Navigation

 	
 index

 	PyTuning 0.7.0 documentation »

Index

 © Copyright 2016, Mark Conway Wirt.
 Created using Sphinx 1.4.9.

 Navigation

 	
 index

 	PyTuning 0.7.0 documentation »

Jupyter Notebooks

This directory contains some samples of interactive analysis conducted
in the Jupyter Notebook [http://jupyter.org/] environment. Github does
a possible job of rendering these, so you can see what’s possible
without going through the formality of actually installing the software.

For complex analysis I would encourage you to explore this environment.

Please see the documentation for notes on installing the Jupyter stack.

 © Copyright 2016, Mark Conway Wirt.
 Created using Sphinx 1.4.9.

 _images/math/645fe4d0a753458b467ffd89097220b32c0c453b.png

_images/math/45da4e5ed406331ccb3050b47c617411a2796a8d.png

_images/math/bd8501f05c501081ef5527f7493bc55b95aacf82.png
wl o

=l o

Nl o

I

_images/math/1815109876301c8a07f66eedc532688a096f042e.png

_static/down-pressed.png

_images/math/653b645a313c6d3f5113b225dd373e51a2b95794.png

_static/ajax-loader.gif

_images/math/08e1276f37fca319bab289ced30d414f552f4cc4.png
26 9 32 81 4 1024 3 128 27 16 243

L s § 27 600 37 79 2 S 16 90 13

_images/math/f577ac1be5ac0b19d7dcc07ac3e9939b26316c83.png

_static/up.png

_images/math/b5b2001c04cbc3f5319c05735a7153a85f61fb7b.png

_static/comment.png

_static/plus.png

_static/down.png

_images/math/666a72e94207c2ce81be71fc4906f8f3b952d614.png
2187 256 8192 262144 4096 3 243 1024 19683 729 6561 65536 177147 59049 81 32 271 4 9 32768 16 128

2048° 243’ 6561° 177147 2187 2’ 128° 729 16384° 512’ 4096° 59049° 131072° 32768’ 64° 27 16° 3 8 19683’ 9 81

_static/comment-close.png

_images/math/9f20ccd57569590848e19d4ada743753a850a1d1.png

_images/math/d53287a8fbb7990c0f09413922c256828f6a8b9b.png
81
64’

4

3

1024
729

3
7

128
81

27
167

16

5

243
128°

_static/file.png

_images/math/44664191964ebb9a0fb9cafbd363a06ba28008e4.png
26 9 32 8 4 729 3 128 27 16 243

L s 5 27 600 3 5130 2 s 16 9 128

_images/math/3d316a6b1f70479abfabb145a07b94db09a91e34.png

_images/math/a06c8326bc615fd7e88aa4fc9bdc4b876b751d7b.png
2,2,1,2,2,2, 1|

_static/comment-bright.png

_static/minus.png

_images/math/69d1f7a7b750980bbd065ba9df8c240184f6a77b.png
x|

| o

_static/up-pressed.png

_images/math/62e515bea1990d47b6d70e34cb57a6f8410a4abe.png
26 9 32 81 4 1024 3 128 27 16 243

L s § 27 600 37 79 2 S 16 90 13

_images/figsave.png
Jupyter QtConsole

File Edt View Kemel Window Help

Tn [16]: matrix
out[16

Consonance Matrix

98 54 1U8 32

In [17]: matrix.savefig(
Signature: natrix.savetig(*args, **kvargs)
Docstring
save the current figure

call signature

savefig(fnane, dpi-None, facecolor='v', edgecolor="v'
orientation="portrait’, papertype=None, form:
transparent=False, bbox_inches=None, pad_inches
franeon=None)

The output fornats available depend on the backend being used
Argunents
*fname+
A string containing a path to a filenane, or a Python

File-like object, or possibly some backend-dependent object [
such as iclass: -natplotlib.backends. backend_pdf.PdfPages

[Docunentation continues

_images/consonance.png
Consonance Matrix

_images/tab1.png
atc

File Edt View Kemel Window Help

In [31: create_

create_diatonic_scale create_lucy_tone_table
create_edo_scale create_lucy_tuning_spiral
create_equal_interval_scale create_pythagorean_scale

create_euler_fokker_scale createguarter_conma meantone scale
create_harnonic_scale

create_lucy_scale_fron_scale

_images/qtconsole_boot.png
atc

File Edt View Kemel Window Help

Jupyter QtConsole 4.2.1
Python 3.5.2 |Continuun Analyt
Type “copyright”, “credit:

s, Inc.| (default, Jul 2 2016, 17:53:06)
or "license" for more information

Teython 5.1.0 -~ An enhanced Interactive Python
-> Introduction and overview of IPython's feature:
Squickret 3 Gick rererance
help -> Python's own help systen
object? -> Details about ‘object’, use ‘object??' for extra details

In [11: %load /opt/miniconda/bin/interactive.py]

_images/math/474e83ee93c48231f78880f03b2f41031d84cc5f.png

_images/rich_printing.png
atc

File Edt View Kemel Window Help

Tn [5]: scale = create_harmonic_scale(3, 10)

Tn [6]: scale
outle]

LT s sy

SnoArs

In [7]: display(scale) # also works
7 4 3 5

R

In [8]: print(scale) # for text
11, 7/6. 4/3, 3/2, 5/3, 2

™ 9l |

_images/unity.png
Distance from Unity

_images/session1.png
File Edt View Kemel Window Help

In [17]: scale = create_harmonic_scale(4, 30)

In [18]: modes

find_best_nodes(scale, 7, ['sun_p_q_for_all_intervals'l, 1, sun_p_q_for_all intervals)
In [19]: my_scale = modes[0] ['scale’]

In [20]: my_scale
outl20]

n o311
:

5
8 4 16 FU

In [21]: with open(’scale. tinidity", "v*) as tin_file
tin_file.write (create_timidity_tuning(ny_scale, reference note-69))

In [22]: with open(*scale.scala®, *v*) as scala_file
scala_file write(create_scala_tuning(ny_scale, “Scale 1))

™ 1230 |

_images/p5.png
Relation to Perfect Fifth

_images/helpers1.png
File Edt View Kemel Window Help

In [25]: harnonic_scale(
First harmonic: 7
Nunber of harmonics: 17

Nornalize? (y/n):y
Current Scale

[1 B 8 17 9 10 11 12

w7 T T T T

In [26]: display(scale) # in the global variable now

[1 B 8 17 9 10 11 12

w7 T T T T

In [27]: print(scale) # text representation
11, 15/14, 8/7. 17/14, 9/7, 10/7. 11/7, 12/7. 13/7. 2

™ 1281 |

13
.2
7
13
.2
7

_images/interactive.png
File Edt View Kemel Window Help

def euler_fokker()
global scale
global cents
intervals = input(*Intervals (list of prine integers)

octave = input(*Fornal Octave (2):*
if len(octave) == 0;

octave = 2
else:

octave = int(octave)

exec(*int parsed <is* % intervals, globals()
nultiplicities = [1]1* Ten(intervals

scale - create_euler_fokker_scale(int_parsed, multiplicities, octave
print(“Current scale

display (scale)

cents = [rati

_cents(x) for x in scale

def set_generators ()
global generators
index = 0
for entry in all_constructors
print(index, entryl1]
index = index + 1
selected = input(*Ahich generator?:*
generators = all_constructorslint (selected)] [0]

Interval = lambda p, q: normalize intervalfisp.Rational(p,q)) C

_images/math/d839e144267ecbb8a87acbc8a7dfda7824a1693e.png

_images/math/09f389d3520b53117436504eccdfb362699c487f.png

_images/graphics.png
Figure 1

2@«

Consonance Matrix

Jupyter QtConsole
File Edt View Kemel Window Help

In [11]: scale = create_harmonic_scale(2,12)

In [12]: matrix = consonance_matrix(scale)

n [13]

_images/tooltip.png
Jupyter QtCe

File Edt View Kemel Window Help

In [31: create_harmonic_scale(

Signature: create_harmonic_scale (first_harmonic, last_harmonic, normalize=True,
octave=2)
Docstrin
Create a harmonic scale
:paran First harmonic: The first harnonic
paran last_harnonic: The last harmonic
:paran normalize: If true, normalize the scale to an octave
(2/1 by default, othervise taken fron octave
:paran octave: The definition of the formal octave.
ireturns: The scale

As an_exanple of use, a normalized scale constructed from harmonics
3t 20:

. code::

scale = create_harmonic_scale(3,20)

hich yields:

[Documentation continues. ..]

_images/math/c465df235080f08b5415024c2fb11aa3bfbeb131.png

_images/math/e835d7625d8d24a0a7ccce7e033e5ee718608fff.png
135

128°

H

I en

T

45
327

3

27
167

_images/math/8670c2d222cab19f2c98fd5df787a7efe8eef532.png

_images/math/16d14f59441fe3b3d7c57975e6e10cbf2474c220.png

_images/math/2fe4b9bdb69db63fa5f64c093e847334a92c4d9c.png

_images/math/318a24c4813fa279afe47894151d68c3e8c7676a.png

_images/math/18acc1fa0d022fd729f0749ddc5f669917d3fb15.png

_images/math/1150764db308de24bf0456564aa4e325d8a3abe8.png
21

_images/math/3561b502bdcc5a1adc4952cc413e9a2b8dab22e3.png

_images/math/3ad9a0e617cf910e895ec5908d31bad28f2f60d4.png

