
PyTuning Documentation
Release 0.7.0

Mark Conway Wirt

Dec 02, 2016

Contents

1 Installation 3

2 Documentation 5

3 Roadmap 7
3.1 Basic Concepts . 7
3.2 Scale Creation . 11
3.3 Metric Functions . 14
3.4 Scale Analysis and Creation (Redux) . 14
3.5 Tuning Tables . 17
3.6 Number Theory . 18
3.7 Utilities . 19
3.8 Visualizations . 22
3.9 Using PyTuning Interactively . 25

4 Index 37

i

ii

PyTuning Documentation, Release 0.7.0

PyTuning is a Python library intended for the exploration of musical scales and microtonalities. It can be used by
developers who need ways of calculating, analyzing, and manipulating musical scales, but it can also be used interac-
tively.

It makes heavy use of the SymPy package, a pure-Python computer algebra system, which allows scales and scale
degrees to be manipulated symbolically, with no loss of precision. There is also an optional dependency on Matplotlib
(and Seaborn) for some visualizations that have been included in the package.

Some of the package’s features include:

• Creation of scales in a variety of ways (EDO, Euler-Fokker, Diatonic, Harmonic, from generator intervals, etc.)

• Ability to represent created scales in ways that are understood by external software (Scala, Timidity, Fluidsynth,
Yoshimi, Zynaddsubfx).

• Some analysis functions (for example, PyTuning provides a framework for searching for scale modes based
upon defined metric functions and combinatorial analysis). Also included are some number-theoretic functions,
such as prime limits and odd limits.

• Some scale visualizations.

• Interactive use.

As a simple example, to create a 31-TET scale and then create a tuning table for the timidity soft-synth:

scale = create_edo_scale(31)
tuning_table = create_timidity_tuning(scale, reference_note=69)

The design of PyTuning is purposefully simple so that non-computer professionals can use it without much difficultly
(musicians, musicologist, interested people of all stripes).

In scope this project is similar to the Scala software package, with a few differences:

• Scala is a mature, full-featured package that includes many, many scales and functions for manipulating and
analyzing those scales. This project is much newer and less mature; it’s scope is currently much less (but
hopefully it will be easy to extend).

• PyTuning is written in Python and relies on modern, well maintained dependencies. Scala is written in Ada,
and while this is an interesting choice, it probably limits the population of users who could change or extend it
should a need arise.

• Scala is mainly an application. PyTuning is a development library, but with ways for non-programmers to use it
interactively.

• This package does not interact with sound cards or audio drivers, so one can’t play a scale directly. There are,
however, functions for exporting scales into other software packages so that music and sound can be produced.

Contents 1

http://www.sympy.org/
http://matplotlib.org/
http://seaborn.pydata.org/
http://www.huygens-fokker.org/scala/

PyTuning Documentation, Release 0.7.0

2 Contents

CHAPTER 1

Installation

PyTuning runs under Python 2.7.X and 3.X.

The easiest way to install PyTuning is via the Python Package Index, with which Pytuning is registered:

pip install pytuning

There are two hard dependencies for PyTuning: SymPy and NumPy. SymPy is a pure Python library and pip will
handle it’s installation nicely. NumPy is a more complicated package and if installed via pip may involve much
compilation; it would probably behoove you to install the package manually via whatever mechanism your platform
provides before pip installing the package .

If you are running the package interactively it is recommended that the Jupyter interactive shell be installed. This is
discussed in the documentation under the notes on Interactive use.

The source-code is available on GitHub, where it can be cloned and installed.

3

https://pypi.python.org/pypi/PyTuning/
http://www.sympy.org/en/index.html
http://www.numpy.org/
https://github.com/MarkCWirt/PyTuning

PyTuning Documentation, Release 0.7.0

4 Chapter 1. Installation

CHAPTER 2

Documentation

Documentation for the package can be found on Read the Docs.

5

http://pytuning.readthedocs.io/

PyTuning Documentation, Release 0.7.0

6 Chapter 2. Documentation

CHAPTER 3

Roadmap

More scales, more visualizations, more analysis functions. Pull requests are welcome!

3.1 Basic Concepts

PyTuning is purposefully designed to be as simple as possible, so that non-programmers (musicologists, musicians,
etc.) can use it without too much difficulty: the data structures are relatively simple; there are currently no classes
defined, instead opting for an imperative/procedural approach.

Regardless of how it is used (interactively or as a development library), the user should have a good understanding of
some of the basic, foundational concepts the package uses.

3.1.1 Scales

A scale is, simply, a list of degrees. By convention the list is bookended by the unison and the octave, with each
degree given as a frequency ratio relative to the root tone of the scale. The first degree is always 1, the ratio of the first
degree to the first degree. Most commonly the last degree is 2, as the octave is usually twice the frequency of the root
(although the package has some support for non-standard “octaves”).

As an example, this is the standard 12-tone equal temperament scale (sometimes referred to as 12-TET, or 12-EDO,
for Equal Division of the Octave).[︁

1,
12
√
2,

6
√
2,

4
√
2,

3
√
2, 2

5
12 ,

√
2, 2

7
12 , 2

2
3 , 2

3
4 , 2

5
6 , 2

11
12 , 2

]︁
A few things to note:

• As mentioned previously, the scale includes the unison and octave.

• Each scale degree is a SymPy number, so it is represented symbolically. Note that algebraic simplifications are
performed by default.

• Even though the length of this list of 13, it is considered a 12 note scale, because the unison and the octave is in
actuality the same note. Many of the functions in this package ask one to choose the number of notes or degrees
to be used in this function. For these you should follow this convention.

(For those who are curious: the generation of scales is documented in Scale Creation, but the above scale was generated
with the following code:

from pytuning.scales import create_edo_scale
edo_12_scale = create_edo_scale(12)

Simplified versions of most functions are provided in the interactive environment.)

7

PyTuning Documentation, Release 0.7.0

3.1.2 Degrees

Scale degrees (which are expressed as frequency rations relative to the tonic of the scale) are expressed in SymPy
values. In practical terms the Integer and Rational class will be used the most, but SymPy is a full-featured
package, and you may benefit from having some familiarity with it.

An example of a few degrees:

import sympy as sp

unison = sp.Integer(1) # Normal unison
octave = sp.Integer(2) # Normal octave
perfect_fifth = sp.Rational(3,2) # As a rational number
minor_second_tet = sp.Integer(2) ** sp.Rational(1,12) # the 12th root of 2

could also by sp.root(2,12)
lucy_L = sp.root(2,2*sp.pi) # Lucy scale Long step

Will yield the following:

1

2

3

2
12
√
2

2
1
2𝜋

SymPy manipulates all values analytically, but sometimes one needs a floating approximation to a degree (for example,
tuning a synthesizer usually needs frequencies expressed as floating point numbers). For the evalf() member
function can be used:

print(unison.evalf())
1.00000000000000
print(octave.evalf())
2.00000000000000
print(perfect_fifth.evalf())
1.50000000000000
print(minor_second_tet.evalf())
1.05946309435930
print(lucy_L.evalf())
1.11663288009114

3.1.3 Modes

A mode is a selection of notes from a scale, and is itself a list of degrees (and therefore is also a scale). A mode can
be produced from a scale by applying a mask to the scale. Again, the functions involved are documented elsewhere,
but as example this is how we would produce the standard major scale (which in the context of this package would be
referred to as a mode):

major_mask = (0,2,4,5,7,9,11,12)
major_mode = mask_scale(edo_12_scale, major_mask)

which produces the following scale:[︁
1,

6
√
2,

3
√
2, 2

5
12 , 2

7
12 , 2

3
4 , 2

11
12 , 2

]︁

8 Chapter 3. Roadmap

http://www.sympy.org/en/index.html

PyTuning Documentation, Release 0.7.0

3.1.4 Mode Objects

Some functions in this package return a mode object. For example, the find_best_modes() function will take
a scale and find a mode (or modes), based upon some consonance metric function. Here is one such object, which is
implemented as a Python dict.

{'mask': (0, 2, 3, 5, 7, 9, 10, 12),
'metric_3': 22.1402597402597,
'original_scale': [1,
256/243,
9/8,
32/27,
81/64,
4/3,
1024/729,
3/2,
128/81,
27/16,
16/9,
243/128,
2],

'scale': [1, 9/8, 32/27, 4/3, 3/2, 27/16, 16/9, 2],
'steps': [2, 1, 2, 2, 2, 1, 2],
'sum_distinct_intervals': 12,
'sum_p_q': 161,
'sum_p_q_for_all_intervals': 4374,
'sum_q_for_all_intervals': 1822}

The meaning of these keys:

• original_scale is the original scale which was input into the function. In this example is was a Pythagorean
scale.

• scale is the output scale of the function

• mask is the mask of the original scale that produces the output

• steps is similar to mask, but reported in a different format. Each entry in the steps list represents the number
of degrees in the original scale between successive degrees in the returned scale. The standard major scale, for
example, would be represented by [2, 2, 1, 2, 2, 2, 1] .

In this example there are also other keys included. sum_distinct_intervals, sum_p_q,
sum_p_q_for_all_intervals, sum_q_for_all_intervals, and metric_3 are the outputs of
calculated metric functions. This particular mode, for example, has a rating of 161 by the sum_p_q metric.

Metric functions are describe briefly below, and in more detail in Metric Functions.

3.1.5 Tuning Tables

Tuning Tables are a representation of a scale, usually a string (which can be written to a file), which can be understood
by an external software package. As an example, to take a standard Pythagorean scale and produce a representation
understood by Scala:

pythag_scale = create_pythagorean_scale()
scala_tuning_table = create_scala_tuning(pythag_scale, "Pythagorean Scale")

The variable scala_tuning_table now contains the following:

3.1. Basic Concepts 9

PyTuning Documentation, Release 0.7.0

! Scale produced by pytuning. For tuning yoshimi or zynaddsubfx,
! only include the portion below the final '!'
!
Pythagorean Scale
12

!
256/243
9/8
32/27
81/64
4/3
1024/729
3/2
128/81
27/16
16/9
243/128
2/1

For many tuning tables one has to pin the scale to some reference frequency. For this the convention of MIDI note
number is employed. For example, in the MIDI standard the note 69 is A 440 Hz, so by specifying a reference of 69,
the corresponding entry in the table would be 400 Hz, and this would represent the root or tonic degree of the scale.

Exporting the above scale in a Csound compatible format:

csound_tuning_table = create_csound_tuning(pythag_scale, reference_note=69)

yields the following:

f1 0 256 -2 8.14815 8.70117 9.16667 9.65706 10.31250 10.86420
→˓ 11.60156 12.22222 \

13.05176 13.75000 14.48560 15.46875 16.29630 17.40234
→˓ 18.33333 19.31413 \

20.62500 21.72840 23.20313 24.44444 26.10352 27.50000
→˓ 28.97119 30.93750 \

32.59259 34.80469 36.66667 38.62826 41.25000 43.45679
→˓ 46.40625 48.88889 \

52.20703 55.00000 57.94239 61.87500 65.18519 69.60938
→˓ 73.33333 77.25652 \

82.50000 86.91358 92.81250 97.77778 104.41406 110.00000
→˓115.88477 123.75000 \

130.37037 139.21875 146.66667 154.51303 165.00000 173.82716
→˓185.62500 195.55556 \

208.82813 220.00000 231.76955 247.50000 260.74074 278.43750
→˓293.33333 309.02606 \

330.00000 347.65432 371.25000 391.11111 417.65625 440.00000
→˓463.53909 495.00000 \

521.48148 556.87500 586.66667 618.05213 660.00000 695.30864
→˓742.50000 782.22222 \

835.31250 880.00000 927.07819 990.00000 1042.96296 1113.75000
→˓1173.33333 1236.10425 \

1320.00000 1390.61728 1485.00000 1564.44444 1670.62500 1760.00000
→˓1854.15638 1980.00000 \

2085.92593 2227.50000 2346.66667 2472.20850 2640.00000 2781.23457
→˓2970.00000 3128.88889 \

3341.25000 3520.00000 3708.31276 3960.00000 4171.85185 4455.00000
→˓4693.33333 4944.41701 \

5280.00000 5562.46914 5940.00000 6257.77778 6682.50000 7040.00000
→˓7416.62551 7920.00000 \

10 Chapter 3. Roadmap

http://csound.github.io/

PyTuning Documentation, Release 0.7.0

8343.70370 8910.00000 9386.66667 9888.83402 10560.00000 11124.93827
→˓11880.00000 12515.55556

This is a 128-entry table, mapping note number to absolute frequency. Csound’s table opcode can be used to index
into the table and play the appropriate frequency, using something like the following:

inote init p4
iveloc init p5
ifreq table inote, 1
a1 oscil iveloc, ifreq, 2

outs a1, a1

(This assumes that p4 in the orchestra file contains MIDI note numbers, of course. If you use a different convention
there are translation opcodes that can be used.)

3.1.6 Metric Functions

Metric Functions are functions that takes a scale as an input and returns a numeric value calculated from that scale.
It is used, for example, in find_best_modes() to evaluate the consonance of a scale (find_best_modes()
uses a metric to evaluate the consonance of all possible modes of a scale and returns the evaluation of those modes as
a mode_object).

The return value of a metric function should be a dict with a unique string identifier as the key and the metric as the
value.

As an example, the following is one of the package-defined metrics:

As an example of use, the following:

pythag = create_pythagorean_scale()
metric = sum_p_q_for_all_intervals(pythag)

yields the following:

{'sum_p_q_for_all_intervals': 1092732}

3.2 Scale Creation

There are several scale-creation functions in the package. They are found in pytuning.scales and can be im-
ported into the program’s namespace with

from pytuning.scales import *

(Note that for interactive use these are imported by default).

3.2.1 The Harmonic Scale

We’ll start with the harmonic scale; it will illustrate many of the concepts used in scale creation.

There are two important concepts to understand:

• Normalization: If a scale is normalized (which is the default in all cases), then the intervals of the scale are
normalized to fall within a single octave. This means scaling the interval either up or down the number of
octaves needed to make the interval fall between the unison and the octave.

3.2. Scale Creation 11

PyTuning Documentation, Release 0.7.0

• The Octave: Normally an octave is defined as a doubling of frequency (2), but it is possible to define an octave
by some other number. If this is the case the normalization will takes place over this new octave.

The function to create a harmonic scale is, create_harmonic_scale:

As an example, if we create a non-normalized harmonic scale of 10 harmonics:

harmonic_scale = create_harmonic_scale(1, 10, normalize=False)

We have the following scale:

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

If we normalize it each interval is scaled by a power of two to fall within 1 and 2. So, for example, the 9 becomes 9
8 ,

because the nine must be scaled by three octaves to fall within that range:

9

8
=

9

23

So the normalized scale is: [︂
1,

9

8
,

5

4
,

3

2
,

7

4
, 2

]︂
But if we change our octave definition to be 3, we normalize on powers of 3:

harmonic_scale = create_harmonic_scale(1, 10, octave=3)

yields: [︂
1,

10

9
,

4

3
,

5

3
, 2,

7

3
,

8

3
, 3

]︂

3.2.2 Equal Divsion of the Octave (Equal Temprament)

Equal temperament scales can be created with the create_edo_scale() function. Note that this function does
not accept a normalize argument, because EDO scales are normalized by definition. If does, however, allow you to
change the definition of the formal octave.

3.2.3 Scales from a Generator Interval

The create_equal_interval_scale() function will generate a scale from a generator interval. This is the
base function for several other scale types (for example, the Pythagorean scale is created with a generator interval of
3
2).

In he creation of a scale, the generator interval can either be used directly (for, for example, making each successive
tone a generator interval above the previous tone), or in an inverted sense (making each interval a generator down from
the previous). This function starts from the unison and walks down the number specified, walking up for the rest of
the intervals.

3.2.4 The Pythagorean Scale

This is the standard Pythagorean scale. Note that we can choose the number of up and down intervals in the scale. The
default yields the standard scale, with the fourth degree as a diminished fifth, as opposed to the augmented fourth.

So, for the standard scale we can use:

12 Chapter 3. Roadmap

PyTuning Documentation, Release 0.7.0

scale = create_pythagorean_scale()

yielding: [︂
1,

256

243
,

9

8
,

32

27
,

81

64
,

4

3
,

1024

729
,

3

2
,

128

81
,

27

16
,

16

9
,

243

128
, 2

]︂
If we wanted the augmented fourth:

scale = create_pythagorean_scale(number_down_fifths=5)

yielding: [︂
1,

256

243
,

9

8
,

32

27
,

81

64
,

4

3
,

729

512
,

3

2
,

128

81
,

27

16
,

16

9
,

243

128
, 2

]︂

3.2.5 The Quarter-Comma Meantone Scale

An example of use:

scale = create_quarter_comma_meantone_scale()

yields: [︃
1,

8

25
5

3
4 ,

√
5

2
,

4 4
√
5

5
,

5

4
,

2

5
5

3
4 ,

16
√
5

25
,

4
√
5,

8

5
,

5
3
4

2
,

4
√
5

5
,

5 4
√
5

4
, 2

]︃

3.2.6 Euler-Fokker Genera

3.2.7 Diatonic Scales

As another example of creating a diatonic scale, we can use the five-limit constructors (which are defined in
pytuning.constants):

five_limit_constructors = [
(sp.Rational(16,15), "s"),
(sp.Rational(10,9), "t"),
(sp.Rational(9,8), "T"),

]

to create Ptolemy’s Intense Diatonic Scale:

from pytuning.constants import five_limit_constructors
from pytuning.scales import create_diatonic_scale

scale = create_diatonic_scale(five_limit_constructors,
["T", "t", "s", "T", "t", "T", "s"])

which gives us: [︂
1,

9

8
,

5

4
,

4

3
,

3

2
,

5

3
,

15

8
, 2

]︂
Note that if every identifier is a single-character string, specification can also be passed in as a string. So this is
equivalent:

3.2. Scale Creation 13

PyTuning Documentation, Release 0.7.0

from pytuning.constants import five_limit_constructors
from pytuning.scales import create_diatonic_scale

scale = create_diatonic_scale(five_limit_constructors, "TtsTtTs")

3.3 Metric Functions

A metric function is a function that takes a scale as input and returns a calculated value. As mentioned in Basic
Concepts, it returns a Python dict with the metric name as the key, and the metric value as the value.

The currently defined metrics all estimate the consonance or dissonance of a scale.

3.3.1 sum_p_q()

3.3.2 sum_distinct_intervals()

3.3.3 metric_3()

3.3.4 sum_p_q_for_all_intervals()

3.3.5 sum_q_for_all_intervals()

3.3.6 All Metrics

There is also a function that calculates all defined metrics for a scale.

3.4 Scale Analysis and Creation (Redux)

Scale Creation describes the way that many standard scales are generated from within the package. But there are other
ways to create scales.

3.4.1 Mode Selection

When one creates a scale – for example, the Pythagorean scale or a scale of the Euler-Fokker Genera – one can looks
at the various modes that can be created for that scale and evaluate them by certain criteria.

The find_best_modes() function can be used for this. This function accepts and input scale, the number of tones
for the mode, and the optimization functions that should be used for evaluating the scale.

As an example, one scale that’s I’ve used in compositions is created from choosing a seven-note mode from a harmonic
scale, optimized over the metric sum_p_q_for_all_intervals(). This particular scale is based upon the
harmonic series referenced to the fourth harmonic.

The following code:

harmonic_scale = create_harmonic_scale(4,30)
modes = find_best_modes(harmonic_scale,

num_tones=7,
sort_order = ['sum_p_q_for_all_intervals'],

14 Chapter 3. Roadmap

PyTuning Documentation, Release 0.7.0

num_scales=1,
metric_function = sum_p_q_for_all_intervals)

yields the following object:

[{'mask': (0, 2, 4, 5, 8, 12, 14, 15),
'original_scale': [1,
17/16,
9/8,
19/16,
5/4,
21/16,
11/8,
23/16,
3/2,
25/16,
13/8,
27/16,
7/4,
29/16,
15/8,
2],
'scale': [1, 9/8, 5/4, 21/16, 3/2, 7/4, 15/8, 2],
'steps': [2, 2, 1, 3, 4, 2, 1],
'sum_p_q_for_all_intervals': 572}]

The returned scale: [︂
1,

9

8
,

5

4
,

21

16
,

3

2
,

7

4
,

15

8
, 2

]︂
minimizes the metric for all possible combinations of 7 notes chosen from the original harmonic scale.

3.4.2 Factoring an Interval

Sometimes it is interesting to take an interval and find an expression for that interval over some set of generator
intervals. For this the function find_factors() is provided.

One has to specify the generator intervals. This is done by passing the function a list of tuples. Each tuple has two
members: The generator interval, and a character representation of the generator interval. Usually these are a single,
unique character (such as X), but it can also be in the form 1/X. If it is in this form the generator interval should be
the reciprocal of the interval designated by X.

As an example, we could create a generator interval that represents the tone and semi-tone of a 31-EDO scale:

edo31_constructors = [
(sp.power.Pow(2,sp.Rational(2,31)), "T"), # a tone
(sp.power.Pow(2,sp.Rational(1,31)), "s"), # a semitone

]

(Note that the tone is just twice the semitone, so we could probably get by with just defining the semitone).

Now we can define an interval, say, one of the intervals of the Pythagorean scale:

21

16

and see what factoring yields an interval closest to the original.

3.4. Scale Analysis and Creation (Redux) 15

PyTuning Documentation, Release 0.7.0

results = find_factors(interval, edo31_constructors)
results

results now contains the factoring, the factoring in symbolic terms, and the resultant interval.

([2**(2/31), 2**(2/31), 2**(2/31), 2**(2/31), 2**(2/31), 2**(2/31)],
['T', 'T', 'T', 'T', 'T', 'T'],
2**(12/31))

The last entry is the returned interval:

2
12
31

If one is interested in seeing how closely the factored interval matches the original interval, the ratio_to_cents()
function in pytuning.utiities can be used.

from pytuning.utilities import ratio_to_cents
print(ratio_to_cents(results[2] / interval))

yields:

-6.26477830225428

In other words, the derived interval is flat about 6.3 cents from the target interval.

3.4.3 Approximating a Scale with Another Scale

The above factoring of an interval over a set of generators can be extended: a scale can be factored too.

To do this the create_scale_from_scale() function is used.

The first step in using this function is to create an interval function. It is similar to find_factors() in that it
accepts an interval and a max factor, and it returns the factor. But the actual generator intervals are bound to this
function.

The easiest way of creating this function is to take the generator intervals that you’re interested in and to bind them to
find_factors() via a partial function application. As an example, we can take the five-limit constructors:

five_limit_constructors = [
(sp.Rational(16,15), "s"),
(sp.Rational(10,9), "t"),
(sp.Rational(9,8), "T"),

]

And use them to approximate the Pythagorean scale:

from pytuning.scales import create_pythagorean_scale
from pytuning.scale_creation import create_scale_from_scale, find_factors
from pytuning.constants import five_limit_constructors
from functools import partial

interval_function = partial(find_factors, constructors=five_limit_constructors)
pythag = create_pythagorean_scale()
results = create_scale_from_scale(pythag, interval_function)

16 Chapter 3. Roadmap

PyTuning Documentation, Release 0.7.0

The return value is a tuple, the first element of which is derived scale, the second of which is the symbolic factoring.
The scale which was found was[︂

1,
16

15
,

9

8
,

32

27
,

81

64
,

4

3
,

1024

729
,

3

2
,

128

81
,

27

16
,

16

9
,

243

128
, 2

]︂
If you look at the Pythagorean scale:[︂

1,
256

243
,

9

8
,

32

27
,

81

64
,

4

3
,

1024

729
,

3

2
,

128

81
,

27

16
,

16

9
,

243

128
, 2

]︂
you can see that they only differ in the second degree (which if we look at the first member of the return we can see is
factored as [’s’]). Looking at how much they differ:

ratio = results[0][1] / pythag[1]
print(ratio)
81/80
print(ratio_to_name(ratio))
Syntonic Comma
delta = ratio_to_cents(ratio)
print(delta)
21.5062895967149

we see that the difference is 81
80 , which is the syntonic comma (about 21.5 cents).

create_scale_from_scale() can also accept a tone_table which is a list of the potential breakdowns that
can be used in the analysis.

Note that the first entry of the factors is always for the ratio 1, and is returned as an empty list (as there really are no
factors in this sense).

3.5 Tuning Tables

A tuning table is a text representation of a scale that can be interpreted by an external program. This is usually used
to tune a synthesizer or other sound source so that the scale can be used in a musical composition.

Some tuning tables – such as that used by Scala – describe the scale in absolute terms, but most need to have a reference
defined so that the scale degrees can be mapped to a frequency. For this purpose the PyTuning package has adopted
the MIDI standard for note numbers and frequencies.

Octave C C# D D# E F F# G G# A A# B
-2 0 1 2 3 4 5 6 7 8 9 10 11
-1 12 13 14 15 16 17 18 19 20 21 22 23
0 24 25 26 27 28 29 30 31 32 33 34 35
1 36 37 38 39 40 41 42 43 44 45 46 47
2 48 49 50 51 52 53 54 55 56 57 58 59
3 60 61 62 63 64 65 66 67 68 69 70 71
4 72 73 74 75 76 77 78 79 80 81 82 83
5 84 85 86 87 88 89 90 91 92 93 94 95
6 96 97 98 99 100 101 102 103 104 105 106 107
7 108 109 110 111 112 113 114 115 116 117 118 119
8 120 121 122 123 124 125 126 127

So, for example, note number 69 corresponds to middle A, whereas 60 corresponds to middle C. The frequency
standard is 12-EDO, and the note 69 is pegged to 440 Hz. Thus if you passed 69 as the reference note, the 69’th entry
in the table would be 440 Hz and this would correspond to the first degree of the scale. 60 would cause the first degree

3.5. Tuning Tables 17

PyTuning Documentation, Release 0.7.0

of the scale to be assigned to that note number (with a corresponding frequency of about 261.6 Hz). The timidity soft
synth is an example of a synthesizer that needs this reference note and frequency.

In general the table will need to be output to disk so that it can read by the program. This can be done with something
like:

from pytuning.tuning_tables import create_timidity_tuning
from pytuning.scales import create_euler_fokker_scale

reference_note = 60
scale = create_euler_fokker_scale([3,5],[3,1])

tuning = create_timidity_tuning(scale, reference_note=reference_note)

with open("timidity.table", "w") as table:
table.write(tuning)

This will cause the generated scale:[︂
1,

135

128
,

9

8
,

5

4
,

45

32
,

3

2
,

27

16
,

15

8
, 2

]︂
to be written to a disk file, timidity.table, which can be understood by timidity:

timidity -Z timidity.table score.mid

3.5.1 Timidity

3.5.2 Scala

The Scala tuning table can be used with the Scala package, but it can also be used to tune the soft synth Zynaddsubfx,
as well as its derivative Youshimi. With the soft synths you will need to explicitly set the reference note and frequency
in the scale GUI.

3.5.3 Fluidsynth

3.5.4 Csound

For use in Csound PyTuning will generate a table of frequencies that can be used as a table lookup, mapped to MIDI
note number. As mentioned in the basic concepts, the easiest way to use this is via the table opcode:

inote init p4
iveloc init p5
ifreq table inote, 1
a1 oscil iveloc, ifreq, 2

outs a1, a1

3.6 Number Theory

While this part of the package isn’t particularly fleshed out yet, there are a few number-theoretic functions for the
analysis of scales.

18 Chapter 3. Roadmap

http://timidity.sourceforge.net/
http://www.huygens-fokker.org/scala/
http://zynaddsubfx.sourceforge.net/
https://sourceforge.net/projects/yoshimi/
http://csound.github.io/

PyTuning Documentation, Release 0.7.0

3.6.1 Odd Limits

PyTuning contains functions for finding the odd Limit for both intervals and scales.

We can define and interval – say, 45
32 , and fine its odd-limit with the following:

from pytuning.number_theory import odd_limit

interval = sp.Rational(45,32)
limit = odd_limit(interval)

which yields and answer of 45.

One can also find the odd limit of an entire scale with the find_odd_limit_for_scale() function:

from pytuning.scales import create_euler_fokker_scale
from pytuning.number_theory import find_odd_limit_for_scale

scale = create_euler_fokker_scale([3,5],[3,1])
limit = find_odd_limit_for_scale(scale)

which yields 135. (Examining the scale:[︂
1,

135

128
,

9

8
,

5

4
,

45

32
,

3

2
,

27

16
,

15

8
, 2

]︂
you will see that this is the largest odd number, and is found in the second degree.)

3.6.2 Prime Limits

One can also compute prime limits for both scales and intervals. Extending the above example, one would assume that
the Euler-Fokker scale would have a prime-limit of 5, since that’s the highest prime used in the generation, and in fact:

from pytuning.scales import create_euler_fokker_scale
from pytuning.number_theory import find_prime_limit_for_scale

scale = create_euler_fokker_scale([3,5],[3,1])
limit = find_prime_limit_for_scale(scale)

will return 5 as the limit.

3.7 Utilities

The PyTuning package contains some utilities which may be useful. In general these tend to be smaller utilities and
tasks that are useful in the analysis of musical scales, but they are not full-featured “things” in and of themselves.

3.7.1 Interval Normalization

As an example, the interval 9 would normalize to 9
8 , because 9 needs to be scaled down by three octaves to fall within

the limit of 1 and 2:

9

8
=

9

23

3.7. Utilities 19

https://en.wikipedia.org/wiki/Limit_(music)#Odd_limit
https://en.wikipedia.org/wiki/Limit_(music)#Prime_limit

PyTuning Documentation, Release 0.7.0

ni = normalize_interval(sp.Integer(9))
print(ni)
9/8

One can also normalize on a non-standard interval, for example, 3:

ni = normalize_interval(sp.Integer(34), octave=3)
print(ni)
34/27

3.7.2 Distinct Intervals

distinct_intervals() returns all the distinct intervals within a musical scale. Note, though, that it does not
include the unison (or the octave) in the results, as all scales contain those intervals by definitions.

As an example, if we were to take a Pythagorean scale and find the intervals that exist within it:

pythag = create_pythagorean_scale()
di = distinct_intervals(pythag)

we end up with:[︂
2187

2048
,

256

243
,

8192

6561
,

262144

177147
,

4096

2187
,

3

2
,

243

128
,

1024

729
,

19683

16384
,

729

512
,

6561

4096
,

65536

59049
,

177147

131072
,

59049

32768
,

81

64
,

32

27
,

27

16
,

4

3
,

9

8
,

32768

19683
,

16

9
,

128

81

]︂

3.7.3 Converting a Ratio to a Cent Value

This function is useful if you have a symbolic value (a rational or transcendental, for example) and you want to see its
value in cents (a logarithmic scale in which there are 1200 steps in a factor of two). For example:

interval = sp.Rational(3,2) # A perfect fifth
cents = ratio_to_cents(interval)
print(cents)
701.955000865387

3.7.4 Converting a Cent Value to a Ratio

This function takes a cent value and returns it as a frequency ratio (a sympy floating point number).

print(cents_to_ratio(700.0))
1.49830707687668

(In other words, the 12-EDO fifth (700 cents) is very close to that of the Pythagorean fifth (32 , or 1.5).)

3.7.5 Converting a Note Number to a Frequency

With this function we can calculate the frequency of any note number. If defaults to the MIDI standard, which pegs
note number 69 to 440 Hz and uses a 12-EDO scale.

As an example, MIDI note 60 (Middle-C):

20 Chapter 3. Roadmap

PyTuning Documentation, Release 0.7.0

print(note_number_to_freq(60))
261.625565300599

But if, for example, we wanted to use a different pitch standard, we could peg A to 444 Hz.

print(note_number_to_freq(60, reference_frequency=444.0))
264.003979530604

You can also pass in a non-EDO tuning if you’re converting a different kind of scale to frequencies. This is used often
in the code associated with the tuning tables.

3.7.6 Naming A Ratio

This function will look up the name of a ratio and return it (returning None) if it is not found.

As an example:

pythag = create_pythagorean_scale()
names = [ratio_to_name(x) for x in pythag]

names now contains:

['Unison',
'Pythagorean Minor Second',
'Pythagorean Major Second',
'Pythagorean Minor Third',
'Pythagorean Major Third',
'Perfect Fourth',
'Pythagorean Diminished Fifth',
'Perfect Fifth',
'Pythagorean Minor Sixth',
'Pythagorean Major Sixth',
'Pythagorean Minor Seventh',
'Pythagorean Major Seventh',
'Octave']

There are currently about 260 intervals in the internal catalog, so while not complete, the database is fairly extensive.

3.7.7 Comparing Two Scales

This function will produce a simple textual representation of the difference between two scales. As an example,
comparing the 12-EDO and Pythagorean scales:

from pytuning.scales import create_edo_scale, create_pythagorean_scale
from pytuning.utilities import compare_two_scales

scale_1 = create_edo_scale(12)
scale_2 = create_pythagorean_scale()

compare_two_scales(scale_1, scale_2, title=['12-TET', 'Pythagorean'])

produces:

12-TET Pythagorean
Cents Freq Cents Freq Delta(Cents)

3.7. Utilities 21

PyTuning Documentation, Release 0.7.0

========= ========= ========= ========= ============
0.0000 220.0000 0.0000 220.0000 0.0000

100.0000 233.0819 90.2250 231.7695 9.7750
200.0000 246.9417 203.9100 247.5000 -3.9100
300.0000 261.6256 294.1350 260.7407 5.8650
400.0000 277.1826 407.8200 278.4375 -7.8200
500.0000 293.6648 498.0450 293.3333 1.9550
600.0000 311.1270 588.2700 309.0261 11.7300
700.0000 329.6276 701.9550 330.0000 -1.9550
800.0000 349.2282 792.1800 347.6543 7.8200
900.0000 369.9944 905.8650 371.2500 -5.8650

1000.0000 391.9954 996.0900 391.1111 3.9100
1100.0000 415.3047 1109.7750 417.6562 -9.7750
1200.0000 440.0000 1200.0000 440.0000 0.0000

3.8 Visualizations

PyTuning includes some visualizations for the analysis of scales, but this is not yet fleshed out.

The graphics are via Matplotlib, which is the de facto implementation of analytical graphics for python. There is also
an optional dependency on Seaborn. Seaborn is good to include if you can – it makes the graphs better – but it’s a large
package, owning to its dependencies (which include SciPy and Pandas; great packages, but extensive and large). If you
have disk space to spare you may want to install it; otherwise you can get my with Matplotlib alone. On my system
SciPy and Pandas weigh in at about 200 megabytes, not including any dependencies that they require. Matplotlib, on
the other hand, is about 26 megabytes.

3.8.1 The Consonance Matrix

It’s nice to be able to get an intuitive feeling for the consonance or dissonance of a scale. For this, the consonance
matrix is provided.

The consonance matrix forms an interval between every degree in the scale and applies a metric function to it. The
default metric function just measures the denominator of the interval after any simplification it can undergo (and is
really only meaningful for degrees which are expressed an integer ratios).

As an example, we can create a scale of the Euler-Fokker type:

scale = create_euler_fokker_scale([3,5],[2,1])

which is [︂
1,

9

8
,

5

4
,

45

32
,

3

2
,

15

8
, 2

]︂
Now, to create a consonance matrix:

from pytuning.visualizations import consonance_matrix
matrix = consonance_matrix(scale)

matrix now contains a matplotlib Figure. To write it as PNG:

matrix.savefig('consonance.png')

Which yields:

22 Chapter 3. Roadmap

http://matplotlib.org/
http://seaborn.pydata.org/
https://www.scipy.org/
http://pandas.pydata.org/

PyTuning Documentation, Release 0.7.0

Because this function accepts an arbitrary metric, it can be used for any analysis performed on the intervals of a scale;
it does not need to really be a measurement or estimate of consonance. As an example, let’s say that (for some reason)
you’re interested in how far from unity each interval is:

def metric_unity(degree):
normalized_degree = normalize_interval(degree)
y = abs (1.0 - normalized_degree.evalf())
return y

scale = create_euler_fokker_scale([3,5],[2,1])
matrix = consonance_matrix(scale, metric_function=metric_unity, title="Distance from
→˓Unity")

Our graph now looks like:

3.8. Visualizations 23

PyTuning Documentation, Release 0.7.0

We could even do something like look for perfect fifths within our scale:

def metric_fifth(degree):
p5 = sp.Rational(3,2)
normalized_degree = normalize_interval(degree)
y = normalize_interval(p5 / normalized_degree).evalf()
y = y if y == 1 else 0
return y

scale = create_euler_fokker_scale([3,5],[2,1])
matrix = consonance_matrix(scale, metric_function=metric_fifth,

title="Relation to Perfect Fifth", annot=False)

which gives us:

24 Chapter 3. Roadmap

PyTuning Documentation, Release 0.7.0

where the highlighted cells denote perfect fifths.

You’ll note that the entry for 45
32 and 15

8 is 1 (a perfect fifth). We can verify this:

print(normalize_interval(sp.Rational(45,32) / sp.Rational(15,8)))
3/2

3.9 Using PyTuning Interactively

With a little knowledge of Python, one can use PyTuning in an interactive environment.

If you plan on doing this, I recommend using the Jupyter QtConsole. Jupyter is a full-featured interactive environment
for several programming languages (the project started as IPython, but has expanded to cover many languages).

Included in the distribution is a script, interactive.py, which is useful for setting up your environment.

3.9.1 Installing Jupyter

(Note: I have experience with Linux and MacOS, so these instructions are focused on these platforms. Jupyter runs
under Windows, but I have no experience on that platform.)

3.9. Using PyTuning Interactively 25

http://jupyter.org/qtconsole/stable/

PyTuning Documentation, Release 0.7.0

On Linux, good ways of installing Jupyter include using your native package manager or installing it via a third-party
distribution.

Native Packages

On Ubuntu Jupyter is still referred to as IPython. On Xenial, for example, there are packages for both Python 2.7 and
Python 3:

vagrant@ubuntu-xenial:~$ aptitude search qtconsole
p ipython-qtconsole - enhanced interactive Python shell - Qt
→˓console
p ipython3-qtconsole - enhanced interactive Python 3 shell -
→˓Qt console
vagrant@ubuntu-xenial:~$

On Arch Linux:

mark@lucid:~$ pacman -Ss qtconsole
community/python-qtconsole 4.2.1-1

Qt-based console for Jupyter with support for rich media output
community/python2-qtconsole 4.2.1-1

Qt-based console for Jupyter with support for rich media output
mark@lucid:~$

(PyTuning will run under either Python 2.7 or Python 3.X, so the version you install is up to you.)

I would also suggest installing Matplotlib so that graphics can be used within the console, i.e:

vagrant@ubuntu-xenial:~$ aptitude search matplotlib
p python-matplotlib - Python based plotting system in a
→˓style similar to
p python-matplotlib:i386 - Python based plotting system in a
→˓style similar to
p python-matplotlib-data - Python based plotting system (data
→˓package)
p python-matplotlib-dbg - Python based plotting system (debug
→˓extension)
p python-matplotlib-dbg:i386 - Python based plotting system (debug
→˓extension)
p python-matplotlib-doc - Python based plotting system
→˓(documentation packag
p python-matplotlib-venn - Python plotting area-proportional two-
→˓and three-w
p python3-matplotlib - Python based plotting system in a
→˓style similar to
p python3-matplotlib:i386 - Python based plotting system in a
→˓style similar to
p python3-matplotlib-dbg - Python based plotting system (debug
→˓extension, Pyt
p python3-matplotlib-dbg:i386 - Python based plotting system (debug
→˓extension, Pyt
p python3-matplotlib-venn - Python 3 plotting area-proportional
→˓two- and three
vagrant@ubuntu-xenial:~$

And optionally Seaborn:

26 Chapter 3. Roadmap

PyTuning Documentation, Release 0.7.0

vagrant@ubuntu-xenial:~$ aptitude search seaborn
p python-seaborn - statistical visualization library
p python3-seaborn - statistical visualization library
vagrant@ubuntu-xenial:~$

(But note that Seaborn is a bit large. See the discussion in Visualizations.)

Third Party Packages

Jupyter can also be installed via third-party Python distributions. This is my preferred way of doing it, and on MacOS
it is (in my opinion) the only viable option. I imagine that a third-party distribution would be the easiest way to do this
on Windows.

One good distribution is Continuum Analytics Miniconda. Once miniconda is installed, the conda tool can be used
to install the necessary packages:

vagrant@ubuntu-xenial:~$ conda install jupyter qtconsole matplotlib seaborn sympy
→˓numpy

3.9.2 Setting the Environment

The PyTuning distribution contains a script, interactive.py, that can be used to import the package into your
namespace, as well as setting up some convenience functions. Where that script lives on your computer can vary by
platform as well as python distribution. If you’re on Linux and installed PyTUning with your system python, there’s a
good chance it’s in /usr/bin. If you installed into the Miniconda distribution, then it will probably be somewhere
like ~/miniconda/bin.

Once you’ve launched the console, this script should be loaded into the environment with the %load command. This
will load it into the console, but you’ll need to execute it. This is normally done with Shitf-enter, although
Control-enter may be used on some platforms/versions.

3.9. Using PyTuning Interactively 27

http://conda.pydata.org/miniconda.html
http://conda.pydata.org/docs/install/quick.html

PyTuning Documentation, Release 0.7.0

This will bring load the script into the console, at which point a [Shit-Enter] will execute it.

28 Chapter 3. Roadmap

PyTuning Documentation, Release 0.7.0

3.9.3 A (Very) Brief Introduction to Jupyter

There are a few things about Jupyter which are useful for interacting with the Python interpreter.

Tab Completion

Jupyter has a very good tab completion system which can save a lot of typing.

As a first example, the %load command (above) can use completion to navigate to the file. One need only type
enough to disambiguate each directory in the path and the tab will complete it, much in the same way that the bash
shell will do so.

Tab completion can also be used to find functions that are defined in your namespace. As an example, by typing
create_ into the console and hitting tab you will see all objects and functions that begin with that string, and by
hitting the tab a second time a selector will be brought up that allows you to select the function you’re after:

3.9. Using PyTuning Interactively 29

PyTuning Documentation, Release 0.7.0

Tool Tips

Jupyter also has a nice tool-tip function that will show a function’s documentation once the opening (is typed:

30 Chapter 3. Roadmap

PyTuning Documentation, Release 0.7.0

History

Jupyter also has a nice history function. If, for example, at some point in your session you entered the following:

In [3]: scale = create_harmonic_scale(2,6)

In [4]:

Then, later on in the session if you type scale =, each time you hit the up arrow it will search through your history
and bring up lines beginning with that character string. You can then edit that line and make changes.

In [3]: scale = create_harmonic_scale(2,6)

In [4]: scale2 = create_harmonic_scale(2,7)

In [5]:

Rich Display

By default scales and degrees will be displayed symbolically. If you want text display you can use the print()
function.

3.9. Using PyTuning Interactively 31

PyTuning Documentation, Release 0.7.0

Graphics

With matplotlib installed one also has access to graphics. A graph can be displayed within the console, or it can
be displayed in a simple viewer that allows some editing and the saving of the graphic file in a few different formats
(JPEG, PNG, SVG). The viewer comes up automatically. If you close it at want to bring it back up later, you can use
the show() function (i.e., matrix.show()).

32 Chapter 3. Roadmap

PyTuning Documentation, Release 0.7.0

Note that by re-sizing the window, you re-size the graphic.

You can also save the figure directly from the console:

3.9. Using PyTuning Interactively 33

PyTuning Documentation, Release 0.7.0

34 Chapter 3. Roadmap

PyTuning Documentation, Release 0.7.0

3.9.4 A Sample Session

On my personal website I discuss a scale that I’ve been working with recently for music composition. It’s a mode of
the harmonic scale which minimizes dissonance by one of the metrics included in the distribution. In the following
session I create the scale and create two tuning tables (a timidity and scala table) for use in music composition.

3.9.5 Helper Functions

interactive.py also creates a few helper functions for the creation of scales. They wrap the base functions in an
interactive prompt and define a global variable, scales into which the calculated scale is placed.

As an example, to create a harmonic scale:

3.9. Using PyTuning Interactively 35

http://www.pataphysical.info/a-new-musical-scale.html

PyTuning Documentation, Release 0.7.0

Only a few functions have yet been written, but more will be included in future releases.

3.9.6 Running in a Persistant Way

Jupyter also offers an interactive notebook, similar to a Matlab notebook. For more complicated analysis it is my
preferred way of interacting with the PyTuning library. Documentation, graphics, equations, code, and output calcu-
lations can all be included. It can be installed in a way that is similar to the console (and in fact may be installed along
with it, depending on how the packages maintainers on your platform have chosen to break things up).

The Github repository for this project has a directory which contains a rendered notebook that shows an exploration
of pentatonic scales in the Pythagorean tuning. Github renders notebooks well, so you can see what’s possible to
decide if you want to install the software. If you’re going to be doing anything really complicated in an interactive
environment, I would recommend installing and using this.

36 Chapter 3. Roadmap

http://jupyter.org/
https://github.com/MarkCWirt/PyTuning/tree/master/docs/notebooks

CHAPTER 4

Index

• genindex

37

	Installation
	Documentation
	Roadmap
	Basic Concepts
	Scale Creation
	Metric Functions
	Scale Analysis and Creation (Redux)
	Tuning Tables
	Number Theory
	Utilities
	Visualizations
	Using PyTuning Interactively

	Index

